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Abstract In this paper, we propose an efficient no-reference image quality assessment (NR-
IQA) method dubbed Center-Surround based Blind Image Quality Assessment (CS-BIQA).
Our proposed method employs the Difference of Gaussian (DoG) model to decompose
images into several frequency bands, considering the center-surround effect and multi-
channel attribute of human visual system (HVS). The integrated natural scene statistics
(NSS) features can be further derived from all DoG bands. After that, regression models
between the integrated features and associated subjective assessment scores are learned on
the training dataset. Subsequently, the learned models are used to predict the quality scores
of test images. The main contribution of this paper is twofold. Firstly, the empirical distri-
butions of DoG bands of images are proven to be a Gaussian-like distribution. And thus, the
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NSS features can be employed to represent the perceptual quality of images. Secondly, dif-
ferent types of distortions are observed to affect different frequency components of images.
So, the integrated features extracted from multi-frequency bands are employed in CS-BIQA
to achieve stronger distinguishable capability of image quality. Excessive experiments are
conducted to indicate that our proposed CS-BIQA metric can represent the perceptual char-
acteristics of HVS. The results on popular IQA databases demonstrate that the CS-BIQA
metric is competitive with the state-of-the-art relevant IQA metrics. Furthermore, our pro-
posed method has very low computational complexity, making it more suitable for real-time
applications.

Keywords Image quality assessment · Center-surround · Natural scene statistics ·
Difference of Gaussian · Support vector regression

1 Introduction

A picture paints a thousand words. So pictures or images are the principal information carri-
ers in our daily life. High-quality images deliver clear and complete information to observers
while images with low quality usually induce confusion. Usually, acquiring high-quality
images faces many challenges as pristine images will be distorted in image processing
tasks (e.g., image acquisition, compression, restoration, transmission). Consequently, a reli-
able image quality assessment (IQA) method is significant to ensure image quality in these
tasks. Depending on the availability of reference information, IQA can be classified into
three categories: 1) full-reference (FR) IQA which needs whole reference [12], 2) reduce-
reference (RR) IQA which needs partial reference [11], and 3) no-reference (NR) IQA
which evaluates image quality without any reference. In this paper, we focus on the NR-IQA
problem.

NR-IQA metrics can be classified into two categories: 1) distortion-specific (DS) metric
and 2) general-purposed metric. The DS-IQA metrics commonly tackle one or a few partic-
ular kinds of distortions, such as blocking artifacts [16], ringing effects [18], blurring [32]
or contrast-change [10]. Thus, the applications of DS-IQA metrics are rather limited. On the
other side, the general-purposed IQA metrics aim at evaluating the quality of image with-
out any prior information of distortions [9, 21, 22]. Therefore, the general-purposed metrics
have stricter conditions and wider applications.

In this paper, we propose a NR-IQA metric by considering the center-surround effect
and multi-channel attribute of human visual system (HVS). There is considerably evidence
that the ganglion cells in retina have the center-surround receptive fields [1, 2]. The cells
exhibit lateral inhibition which can be well simulated by the Difference of Gaussian (DoG)
model. Moreover, image distortions are observed to have specific statistical characteristics
on different frequency components of images. This phenomenon will be further discussed
in Section 3.2. Therefore, the statistical features are extracted from every DoG bands for
obtaining a faithful representation of image quality in our proposed method. Then the
features of all DoG bands are combined into the comprehensive feature. Finally, the com-
prehensive feature and associated human opinion scores of training dataset are fed into the
support vector regression (SVR) to learn a regression model. The quality score of distorted
image can be predicted using the trained regression model.

The rest of this paper is organized as follows. Section 2 presents the related work of
general-purposed NR-IQA and existing DoG-based IQA metrics. Section 3 presents the
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details of our proposed method. Section 4 presents the experimental results, and Section 5
concludes the paper.

2 Related work

2.1 General-purpose NR-IQA metrics

In last decade, enormous of elaborated general-purposed NR-IQA metrics have been pro-
posed. These metrics can be divided into two categories, which are called as opinion-aware
IQA (OA-IQA) and opinion-unaware IQA (OU-IQA), depending on the availability of
subjective opinion scores (human opinion). OU-IQA metrics only use unlabeled distorted
images while they always need auxiliary methods to acquire quality benchmarks. Compar-
atively speaking, OA-IQA methods use subjective opinion scores of images, so the latent
relationship between the images and subjective opinion scores can be learned from the train-
ing data intuitively and precisely. In order to evaluate the image quality more effectively
and efficiently, many powerful quality-aware features are designed to represent the quality
of images. These studies almost share a unified architecture which trains a model in training
procedure and predicts the image quality in testing procedure.

Opinion-unaware method In [21], Mittal et al. construct a collection of quality-aware
features from a corpus of high-quality images. Then these features are fitted with a
global multivariate Gaussian (MVG) model. By using the pre-trained MVG model as the
benchmark of image quality, the quality of test image can be expressed as the distance
between MVG model of test image and benchmark. In [36], Zhang et al. improve NIQE
in two aspects, including by using enhanced features and adopting local MVG model.
The integrated Local NIQE (IL-NIQE) shows state-of-the-art performance on several IQA
databases. In [19], Lu et al. extend NIQE to shearlet domain. In [13], Gu et al. employ a
reliable modified PCQI metric [34] to calculate the labels of training images. Five factors,
including image contrast, sharpness, brightness, colorfulness, and naturalness are consid-
ered to extract 17 features. After that, the SVR is employed to learn the regression model and
predict the image quality. Although OU-IQA methods have achieved preliminary successes,
most of these literatures only demonstrate their availability on limited types of distortions.

Opinion-aware method In [22] and [23], the statistical features are extracted from
wavelet subbands. The probabilities of distortion categories are estimated by a multi-class
support vector machine (SVM). Then, the SVR tool or other distortion-specific IQA meth-
ods are suggested to calculate a quality score for each distortion category. Finally, the total
image quality score is represented as a probability-weighted summation of individual qual-
ity scores. Both BIQI [22] and DIIVINE [23] assume that the categories of distortions in the
test dataset are represented in the training dataset, which is not the case in many practical
applications. Meanwhile, Saad et al. [28] propose a BLIIND metric based on the hypoth-
esis that the statistical features of images in DCT domain can vary in a predictable way
as the image quality changes. So, the statistical features are extracted to represent the con-
trast and structure of images, and the MVG distribution is used as a probability prediction
model to predict the image quality. Later on, more sophisticated features are developed to
extend BLIINDS to BLIINDS-II [29]. In [20], the divisive normalization strategy is applied
to reduce the correlation between surrounding pixels of images. The empirical distribution
of locally normalized luminance coefficients and the pairwise products of these coefficients
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are utilized to design the features for image quality prediction. In [9], quality-aware features
are extracted from three aspects, including the structural degradation, the HVS-inspired fea-
tures and the possible losses of naturalness in distorted images. In [35], Xu et al. employ
a codebook-based framework for adaptively extracting quality-aware features instead of
the handcraft ways. As SVR is a commonly used and efficient machine learning tool in
learned based methods, it is inevitably employed by these methods [9, 13, 20, 35] to learn
the mapping function between features of training images and associated quality scores for
predicting the quality scores of test images.

2.2 DoG-based IQA metrics

Over the years, the new IQA metrics put more emphasis on combining human visual
psycho-physiological properties. In [5], images are divided into the salient and no-salient
regions by an improved Itti algorithm. Then the natural scene statistic (NSS) features are
extracted from two kinds of regions, separately. Finally, the features are combined to pre-
dict the image quality by SVR. However, the visual salient mechanism actually affects
the importance of image regions in IQA. The NSS features extracted from the salient and
no-salient regions have no apparently complementary effect. Except these salient-based
methods, the DoG model simulated the exhibit lateral inhibition of the ganglion cells in
retina has been preliminarily used in IQA methods. In [24], Pei et al. propose an FR-
IQA method to calculate image quality scores on each DoG band by the classical FR-IQA
metrics, in which the quality scores of all DoG bands constitute a new feature. Then, a
random forest regression approach is employed to predict the quality of images. Pei and
Chen [24] obtains a remarkable performance, however, it is limited by the reference infor-
mation. In [6], an FRIQUEE metric is proposed. The single-layer DoG filter is performed
on the sigma map of images and six statistical features are extracted. Then, these DoG-
based features are integrated with amounts of other features to predict the image quality by
a deep belief network. Ghadiyaram and Bovik [6] achieves high performance on various
IQA databases. However, only single-layer DoG filter is performed on the sigma maps of
images, so the multi-frequency characteristic of DoGmodel is not used in FRIQUEE.Mean-
while, the sigma map mainly describes the high-frequency attribute of an image, while the
low-frequency attribute of images is not considered. Moreover, the FRIQUEE method costs
a large amount of time for extracting the abundant features, making this method unpracti-
cal. In [30], multi-scale dictionaries are learned from DoG bands of left training images by
sparse representation algorithms. The sparse representation coefficients of images are uti-
lized to generate the quality-aware feature to predict the image quality by SVR. Due to the
features used in [30] are computed from a set of learned dictionaries, the images employed
to learn the dictionaries become very important, but there are still no criterion to choose the
training images.

3 Proposed method

In the low-level vision of retina, the ganglion cells have the center-surround receptive fields.
The cell exhibits lateral inhibition: light in the center is excitatory while light in the sur-
round is inhibitory [1], and this attribute can be well simulated by DoG model. Moreover,
the visual responses of HVS can be approximated by a set of DoG models where the
number of DoG ranges from 2 to 4 [17]. Through DoG decomposition, images can be
divided into several frequency bands. Image distortions are observed to affect image quality
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differently on individual DoG bands. By analyzing the degradation induced by distortions
on each individual DoG band, the quality of test images can be predicted more precisely.
Our proposed method includes three procedures: DoG decomposition, feature extraction
and model regression.

3.1 DoG decomposition

DoG is a feature enhancement algorithm that utilizes the subtraction of one blurred version
of an original image from another less blurred version of the original image. As a feature
enhancement algorithm, the DoG model can be used to improve the visibility of edges and
other details presented in an image. Firstly, we decompose an image into several different-
frequency bands by the DoG filter. The filter is defined as

DOGσ1,σ2 = Gσ1 − Gσ2 (1)

where Gσ is a Gaussian kernel with standard deviation σ . The DoG band of image I can be
calculated by

IDOGσ1,σ2 = I ∗ DOGσ1,σ2 = I ∗ Gσ1 − I ∗ Gσ2 (2)

where ∗ is a convolution operator.
By (2) and several Gaussian kernels with different σ , we can decompose image I into

different DoG bands, which can be represented as

IDOGi
=

⎧
⎨

⎩

I − I ∗ Gσ1 i = 0
I ∗ Gσi − I ∗ Gσi+1 i = 1 ∼ N − 2
I ∗ Gσi i = N − 1

(3)

From (3), we can observe that the summation of all DoG bands is identical to the original
image. This attribute shows that the DoG model does not lose any information of original
image and thus guarantees the full utilization of image information.

The standard deviation σ and the kernel size S of Gaussian kernel can be defined as

σi = ki−1, i = 1 ∼ N − 1. (4)

Si = 6ki, i = 1 ∼ N − 1. (5)

In this paper, the level of DoG is set to be N = 2 as the increase of N does not improve
the performance significantly. The parameter k in (4) and (5) is set to 1.6. This configuration
ensures the computational conveniences and effectiveness of the proposed method.

Finally, we divide an image into high-frequency band and low-frequency band, denoted
as DoGh and DoGl . As illustrated in Fig. 1, (a) is a reference image, (d) is a distorted
version of (a). (b), (e) are the high-frequency bands corresponding to (a), (d), and (c), (f) are
the low-frequency bands of (a), (d). We can observe that, (b), (e) represent the detail portion
of images, and (c), (f) consist of the basic structures of images. Meanwhile, Fig. 1 shows
that the DoG bands of reference image and distorted image present different visual content.

3.2 Feature extraction

It has been proven that the distribution of locally normalized luminance of a natural image
closely follows the Gaussian-like distribution, and this distribution can excellently indicate
the degree of quality degradation of distorted image [36]. The natural scene statistics (NSS)
model is usually used to represent this attribute of a natural image. The locally normalized
luminance of image can be computed by local mean subtraction and divisive normalization
[27].
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(a) (b) (c)

(d) (e) (f)

Fig. 1 DoG bands of an exemplar image. a is a reference image; d is a distorted version of (a); b and e are
the high-frequency bands corresponding to (a) and (d); c and f are the low-frequency bands of (a) and (d)

Given a gray image I (x, y), x ∈ 1, 2...M , y ∈ 1, 2...N , M and N are the height and
width of an image, respectively. Then, the locally normalized luminance of I (x, y) can be
calculated by

Î (x, y) = I (x, y) − μ(x, y)

σ (x, y) + C
(6)

where C = 1 is a constant to prevent instabilities. The Î (x, y) is also called the mean
subtracted contrast normalized (MSCN) coefficients of image I (x, y). μ(x, y) and σ(x, y)

are the local mean value and local standard deviation of I (x, y) respectively. They are
calculated by

μ(x, y) =
I∑

i=−I

J∑

j=−J

ωi,j I (x + i, y + j) (7)

σ(x, y) =
√
√
√
√

I∑

i=−I

J∑

j=−J

ωi,j (I (x + i, y + j) − μ(x, y))2 (8)

where ω = {ωi,j |i = −I, ...I, j = −J, ..., J } defines a unit-volume Gaussian window.
Figure 2a shows the MSCN coefficients’ distribution of a reference image and its four

commonly distorted versions in spatial domain. Through DoG decomposition, these images
are split into DoGh and DoGl parts as shown in Fig. 2b and c. We can observe that the
empirical distribution of each DoG band also closely follow a Gaussian-like distribution.
Based on this observation, the NSS model is employed to extract NSS features from each
individual DoG band. The NSS features used in this context contains two parts, including
statistics of MSCN coefficients and statistics of MSCN pairwise products.
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(a) Spatial domain
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(b) band
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(c) band

Fig. 2 MSCN coefficients’ distribution of a reference image and four commonly distorted images

Statistics of MSCN coefficients The MSCN coefficients’ distribution of an image can
be captured by a generalized Gaussian distribution (GGD) with zero mean. The density
function of GGD is given by

f (x; α, σ 2) = α

2β�(1/α)
exp

(

−
( |x|

β

)α)

(9)

where

β = σ

√
�(1/α)

�(3/α)
(10)

and �(·) is the gamma function,

�(a) =
∫ ∞

0
tα−1e−t dt a > 0. (11)

The parameter α is a shape parameter, and σ 2 is the variance of GGD. The presence of
distortion will change the values of α and σ 2. Consequently, (α, σ 2) constitutes the first
part of the quality-aware feature used in our method:

fC = [α, σ 2] (12)

Statistics of MSCN pairwise products The pairwise products of adjacent MSCN
coefficients [20] are suggested to compute along four orientations, separately, as follows

H(x, y) = Î (x, y)Î (x, y + 1) (13)

V (x, y) = Î (x, y)Î (x + 1, y) (14)

D1(x, y) = Î (x, y)Î (x + 1, y + 1) (15)

D2(x, y) = Î (x, y)Î (x + 1, y − 1) (16)

where x ∈ {1, 2, ..., M} and y ∈ {1, 2, ..., N}.
The empirical distribution of pairwise products has been shown to obey an asymmetric

generalized Gaussian distribution (AGGD). The AGGD with zero mean is given by

f (x; ν, σ 2
l , σ 2

r ) =

⎧
⎪⎨

⎪⎩

ν

(βl+βr )�( 1
ν
)
exp

(
−

(−x
βl

)ν)
x < 0

ν

(βl+βr )�( 1
ν
)
exp

(
−

(
x
βr

)ν)
x ≥ 0

(17)

βl = σl

√
√
√
√�( 1

ν
)

�( 3
ν
)
, βr = σr

√
√
√
√�( 1

ν
)

�( 3
ν
)
. (18)
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where ν is shape parameter. σ 2
l and σ 2

r are scale parameters.
Additionally, the mean value η of AGGD is computed to provide a best AGGD fitting by

η = (βr − βl)
�( 2

ν
)

�( 1
ν
)
. (19)

Thus, the second part of our proposed quality-aware feature is constituted of the parame-
ters (η, ν, σ 2

l , σ 2
r ). These parameters are extracted respectively along the orientations of H ,

V , D1 and D2.
fH = [ηH , νH , σ 2

lH , σ 2
rH ] (20)

fV = [ηV , νV , σ 2
lV , σ 2

rV ] (21)

fD1 = [ηD1, νD1, σ
2
lD1, σ

2
rD1] (22)

fD2 = [ηD2, νD2, σ
2
lD2, σ

2
rD2] (23)

The quality-aware feature f = [fC, fH , fV , fD1, fD2] is extracted on each DoG band,
which can be summarized in Table 1. The 18 parameters in f can be estimated using the
moment-matching based approach [31]. Moreover, an additional feature is extracted at a
down-sampling image with factor 2, considering that image quality is affected by viewing
distance and image resolution [8]. Eventually, a 36-dimensional quality-aware feature can
be computed from each DoG band.

The advantage of extracting features on DoG bands In Section 3.1, we have
introduced the advantages of using DoG model from the aspect of human visual psycho-
physiological properties. In this paragraph, we will discuss the superiorities of using DoG
model in terms of the discriminatory ability of features. Clearly, an eligible feature in IQA
should have two characteristics: a) different categories of distortions should have distinctive
features; b) the features should distinguish the intensities of distortions.

From this point of view, we find that the above-mentioned NSS feature in spatial domain
has two drawbacks: a) the feature extracted on spatial domain shows low discrimination
for some specific distortions. An example is illustrated in Fig. 3. The image “women” and
four distorted versions of it in TID database, including additive Gaussian noise (#1), dif-
ferent additive noise in color components (#2), spatially correlated noise (#3) and masked
noise (#4) are shown in (a)-(e). The statistical curves of them in spatial domain are shown
in (f). Apparently, distortion #2 and #3 heavily overlap each other, which are nearly indis-
tinguishable. Besides, the gap between distortion #1 and #4 is too small to be distinguished.
b) Some other distortions with different levels of intensities are indistinguishable. Taking
JPEG 2000 compression noise for example illustrated in Fig. 4a. The statistical curves of
distortions with four intensities are plotted. It clearly demonstrates that the statistical curves
of the second to fourth level are heavily overlapped.

Table 1 Summary of extracted features

Feature ID Feature description Computation procedure

fC Shape, variance Fitting GGD to MSCN coefficients

fH Mean, shape, left variance, right variance Fitting AGGD to H pairwise products

fV Mean, shape, left variance, right variance Fitting AGGD to V pairwise products

fD1 Mean, shape, left variance, right variance Fitting AGGD to D1 pairwise products

fD2 Mean, shape, left variance, right variance Fitting AGGD to D2 pairwise products
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(e) # 4 distorted image
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Fig. 3 The empirical distributions of different types of distortions on spatial domain and DoG bands
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(a) The empirical distributions on spatial domain
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(b) The empirical distributions on

Fig. 4 The empirical distributions of JPEG 2K compressed images with four compress rates

In our proposed method, we utilize the DoGmodel to overcome these drawbacks. Images
are decomposed from spatial domain to several DoG bands. Then the quality-aware fea-
tures are extracted from all DoG bands to simulate the multiple strategies of HVS. The
imperfection in single spatial domain can be solved by using complementary information
in multiple DoG bands. More concretely, for the drawback a), the indistinguishable curves
(#2 and #3, #1 and #4) can be easily discriminated in DoGl as shown in Fig. 3h. Although
there still exist some overlaps in Fig. 3h, the overlap parts in DoGl are separated in DoGh

as shown in Fig. 3g. On the other hand, with regard to drawback b), some image distortions
influence the high-frequency component of images. The high-frequency degradations are
always masked by the low-frequency components of images in spatial domain. However,
the masked high-frequency degradations are obviously distinguishable in DoGh. Figure 4b
shows that the statistical curves which heavily overlapped in spatial domain (Fig. 4a) are
easily discriminable in DoGh. In summary, by utilizing the complementary information in
DoGh and DoGl , the above mentioned drawbacks can be overcome and a more effective
quality-aware feature for IQA will be obtained.

3.3 Model regression and prediction

The quality-aware features f are extracted from DoGh and DoGl separately, denoted as
fDoGh

and fDoGl
. Then, they are combined as F = [fDoGh

, fDoGl
]. The training features

Ftrain = [F1; ...; Ftn] are extracted from the training dataset, where tn is the number of
images in the training dataset. Finally, Ftrain and associated subjective opinion scores are
fed into SVR to train the regression model.

The LIBSVM package [3] is used to implement the SVR with a radial basis function
(RBF) kernel. To predict the quality of a test image, the feature Ftest is first extracted. Then,
the learned regression model is applied to map Ftest to the predicted quality score.

4 Experimental evaluation

To evaluate the performance of our proposed method, we conduct thorough experiments
on six popular IQA databases: TID2013 [26], TID [25], LIVE Multiply Distorted [14],
LIVE [33], CSIQ [15] and BID [4]. The first five databases consist of reference images,



Multimed Tools Appl (2018) 77:20731–20751 20741

distorted images and associated subjective opinion scores. The BID database consists of
realistic camera images containing many categories of blur distortions, and thus it only has
distorted images and associated subjective opinion scores. The subjective opinion scores
are generally given by two forms: mean opinion score (MOS) and difference mean opinion
score (DMOS). The information regarding the distorted image content and subjective opin-
ion scores of these datasets is summarized in Table 2. It is worth noting that LIVE Multiply
Distorted (MD) IQA database consists of two parts which we denote by LIVE MD1 and
LIVE MD2 [36]. Images in LIVE MD1 are distorted by blur followed by JPEG, and images
in LIVE MD2 are distorted by blur followed by noise.

Our proposed CS-BIQA metric is compared with several state-of-the-art NR-IQA met-
rics, including BLIIND-II [28], BRISQUE [20], NIQE [21], IL-NIQE [36], and the existing
DoG-based IQA metrics FRIQUEE [6] and 3D-IQA [30] are also compared. Since the
source code is unreleased, the 3D-IQA metric method is implemented by ourself. Moreover,
only DoG-based features in FRIQUEE, denoted as FRI-DoG for short, are used to evaluate
the quality for fair comparison. The source codes of other metrics are downloaded from the
websites offered in the literatures.

Three commonly used metrics are employed to evaluate the performance of all IQA met-
rics, including the Pearson linear correlation coefficient (PLCC), the Spearman’s rank-order
correlation coefficient (SRCC) and the Kendall rank-order correlation coefficient (KRCC).
Among these performance metrics, PLCC is adopted to evaluate the prediction accuracy.
SRCC and KRCC are utilized to assess the prediction monotonicity. Before calculating
PLCC between objective scores and subjective opinion scores, we adopt the regression anal-
ysis approach which recommended by video quality experts group. More concretely, we
choose a logistic mapping function with five-parameters:

f (x) = β1(
1

2
− 1

1 + exp(β2(x − β3))
) + β4x + β5 (24)

where x denotes the raw objective score which computed by the IQA metric, f (x) denotes
the mapped score for the performance evaluation, and βi, i = 1, 2, ..., 5 are the parameters
to be fitted. A better IQA metric is expected to obtain higher values of PLCC, SRCC and
KRCC.

4.1 Experiments on individual databases

We first evaluate the overall performance on each individual database. Each database is sep-
arated into two groups: the distorted images associated with 80% of the reference images

Table 2 Benchmark IQA databases used to evaluate IQA metrics

Database Reference Distorted Distortion Contains

Image No. Image No. Types No. multiply-distortions

TID2013 25 3000 24 YES

TID 25 1700 17 NO

CSIQ 30 866 6 NO

LIVE 29 779 5 NO

LIVE MD1 15 255 1 YES

LIVE MD2 15 255 1 YES

BID 0 585 Various blurring YES
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are used for training and the remaining 20% images are used for testing. Since NIQE and
IL-NIQE have specific training datasets, which are different from these commonly used
databases. So we only report their performance on the partitioned testing subset to promise
the fairness. Considering the influence of training subsets, each database is randomly par-
titioned and repeat 1000 times. These random subsets are used to remove the impact of
training subsets. The median values of the PLCC, SRCC and KRCC are shown in Table 3.
Moreover, the average results of all databases are listed too, and the weighted average results
are weighted by the size of each database. For each criterion, the best two are highlighted
in boldface.

From the observation of Table 3, we can draw the following conclusions. Firstly, on the
most of databases and the average levels, the results of CS-BIQA always lie in the best two
positions. This demonstrates that the proposed IQA metric can effectively predict the qual-
ity of images in the databases. Secondly, on the databases which contained more types of
distortions (e.g. TID2013), the advantage of CS-BIQA is more obvious. This demonstrates

Table 3 The performance evaluation on each individual database, in which the top two of results are
highlighted in boldface

BLIIND-II BRISQUE NIQE IL-NIQE FRI-DoG 3D-IQA CS-BIQA

PLCC 0.6040 0.6688 0.3752 0.5746 0.4941 0.5831 0.7428

TID2013 SRCC 0.4733 0.5814 0.3128 0.4944 0.3292 0.5005 0.6705

KRCC 0.3348 0.4215 0.2129 0.3494 0.2331 0.3481 0.4909

PLCC 0.6703 0.6881 0.3114 0.5614 0.4839 0.5750 0.7527

TID SRCC 0.5569 0.6240 0.2429 0.4593 0.2873 0.5068 0.6955

KRCC 0.4023 0.4559 0.1672 0.3256 0.2040 0.3559 0.5150

PLCC 0.7989 0.7697 0.7213 0.8570 0.5492 0.6522 0.8491

CSIQ SRCC 0.7303 0.6947 0.6278 0.8120 0.4303 0.5909 0.7894

KRCC 0.5483 0.5194 0.4627 0.6224 0.3052 0.4250 0.6067

PLCC 0.9048 0.8872 0.9081 0.9050 0.5893 0.8161 0.9236

LIVE SRCC 0.8992 0.8775 0.9039 0.8964 0.4213 0.8082 0.9228

KRCC 0.7289 0.7015 0.7274 0.7150 0.3195 0.6100 0.7714

PLCC 0.9374 0.9144 0.9154 0.9157 0.8599 0.8960 0.9247

LIVE SRCC 0.8956 0.8809 0.8666 0.8860 0.8150 0.8709 0.9010

MD1 KRCC 0.7280 0.7111 0.6879 0.7051 0.6051 0.6828 0.7333

PLCC 0.8992 0.9027 0.8555 0.9045 0.8649 0.8315 0.9097

LIVE SRCC 0.8798 0.8770 0.7923 0.8760 0.8520 0.8082 0.8901

MD2 KRCC 0.7051 0.7038 0.6094 0.6980 0.6673 0.6040 0.7152

PLCC 0.5229 0.6071 0.4511 0.4836 0.5343 0.5266 0.6738

BID SRCC 0.5028 0.5807 0.4552 0.4935 0.5155 0.5220 0.6494

KRCC 0.3474 0.4058 0.3083 0.3422 0.3491 0.3646 0.4620

Direct PLCC 0.7625 0.7769 0.6481 0.7431 0.6251 0.6972 0.8252

average SRCC 0.7054 0.7309 0.6004 0.7026 0.5215 0.6582 0.7884

KRCC 0.5421 0.5599 0.4539 0.5368 0.3833 0.4843 0.6135

Weighted PLCC 0.6885 0.7194 0.4975 0.6549 0.5366 0.6285 0.7829

average SRCC 0.5976 0.6557 0.4421 0.5919 0.3903 0.5696 0.7302

KRCC 0.4435 0.4884 0.3229 0.4376 0.2807 0.4078 0.5530
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that the CS-BIQA metric can handle more complicated situations than the other competing
metrics. Finally, the performance of CS-BIQA is higher than the FRI-DoG and 3D-IQA, this
demonstrates that, our proposed features extracted on the all DoG bands of pristine images
are more effectively than the DoG-based features proposed in FRI-DoG and 3D-IQA.

Moreover, the box plot of SRCC values of competing metrics on TID2013 is shown in
Fig. 5. Box plot shows the median value and the distribution range of SRCC values. We can
observe that CS-BIQA has the highest median value and moderate stability. In addition, the
lower bound of CS-BIQA is higher than the upper bounds of other competing methods.

4.2 Experiments on each type of distortion

In this experiment, the SRCC values of all IQA metrics on each individual type of distor-
tion in TID2013 are reported in Table 4. There are 24 types of distortions in TID2013, and
they are Additive Gaussian Noise (#1), Additive Noise in Color Components (#2), Spatially
Correlated Noise (#3), Masked Noise (#4), High Frequency Noise (#5), Impulse Noise (#6),
Quantization Noise (#7), Gaussian Blur (#8), Image Denoising (#9), JPEG Compression
(#10), JPEG2000 Compression (#11), JPEG Transmission Errors (#12), JPEG2000 Trans-
mission Errors (#13), Non Eccentricity Pattern Noise (#14), Local Block-wise Distortions
(#15), Mean Shift (#16), Contrast Change (#17), Change of Color Saturation (#18), Multi-
plicative Gaussian Noise (#19), Comfort Noise (#20), Lossy Compression of Noise Images
(#21), Color Quantization with Dither (#22), Chromatic Aberrations (#23), and Sparse Sam-
pling and Reconstruction (#24). The entire TID database is employed as the training dataset.
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Fig. 5 Boxplot of SRCC values on TID2013
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Table 4 Performances on individual distortion types in TID2013, in which the top two of results are
highlighted in boldface

Distortion type BLIIND-II BRISQUE NIQE IL-NIQE FRI-DoG 3D-IQA CS-BIQA

#1 0.7226 0.8523 0.8194 0.8760 0.5609 0.4037 0.8727

#2 0.6497 0.7090 0.6699 0.8159 0.2580 0.0978 0.6584

#3 0.7674 0.4908 0.6660 0.9233 0.5457 0.6304 0.8690

#4 0.5127 0.5748 0.7464 0.5120 0.1366 0.2534 0.5814

#5 0.8245 0.7528 0.8449 0.8685 0.8275 0.7564 0.9300

#6 0.6501 0.6299 0.7434 0.7551 0.8604 0.5769 0.6377

#7 0.7816 0.7984 0.8500 0.8730 0.2675 0.4971 0.7656

#8 0.8557 0.8134 0.7954 0.8142 0.6281 0.8775 0.9315

#9 0.7116 0.5864 0.5903 0.7500 0.4800 0.7361 0.8409

#10 0.8643 0.8521 0.8402 0.8349 0.1292 0.8521 0.7881

#11 0.8984 0.8925 0.8891 0.8578 0.6488 0.8721 0.9347

#12 0.1170 0.3150 0.0028 0.2827 0.0381 0.6419 0.8559

#13 0.6209 0.3594 0.5102 0.5248 0.6116 0.7199 0.8506

#14 0.0968 0.1453 0.0698 0.0805 0.1074 0.2011 0.3864

#15 0.2098 0.2235 0.1269 0.1357 0.0137 0.0643 0.6841

#16 0.1284 0.1241 0.1626 0.1845 0.0444 0.0639 0.3822

#17 0.1505 0.0403 0.0180 0.0141 0.4245 0.6645 0.7076

#18 0.0178 0.1093 0.2460 0.1628 0.1259 0.1981 0.0595

#19 0.7165 0.7242 0.6940 0.6932 0.4555 0.3011 0.8006

#20 0.0178 0.0081 0.1548 0.3599 0.3879 0.5996 0.2213

#21 0.7193 0.6852 0.8011 0.8287 0.5342 0.7079 0.4920

#22 0.7358 0.7640 0.7832 0.7487 0.0937 0.7411 0.6030

#23 0.5397 0.6160 0.5612 0.6793 0.7545 0.6949 0.8005

#24 0.8164 0.7841 0.8341 0.8650 0.6266 0.7537 0.8009

Hit count 3 7 6 10 3 5 15

For each individual type of distortion, the best two results are highlighted in boldface. In
addition, we report the hit count (the number of times ranked in the top 2 for each distortion
type [35]) of each metrics.

From the results of Table 4, we can draw the following conclusions. Firstly, CS-BIQA
has the highest hit count, which verifies again that our proposed method can handle most
types of distortions than the other competing metrics. Secondly, our proposed method can
evaluate some specific distortions that the other competing metrics are nearly disabled, for
example, JPEG transmission errors (#12) and contrast change (#17).

4.3 Database independence

To evaluate the database independence of CS-BIQA metric, we train the metric on LIVE
dataset and then test on TID2013, TID, CSIQ, LIVE MD1 and LIVE MD2 databases. The
SRCC values are tabulated in Table 5. For each criterion, the best two results are highlighted
in boldface.
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Table 5 The evaluation of database independence, in which the top two of results are highlighted in boldface

BLIIND-II BRISQUE NIQE IL-NIQE FRI-DoG 3D-IQA CS-BIQA

PLCC 0.4973 0.5010 0.3991 0.5884 0.4327 0.1430 0.5879

TID2013 SRCC 0.3767 0.4297 0.3120 0.4938 0.2861 0.1205 0.5002

KRCC 0.2620 0.2982 0.2122 0.3491 0.1968 0.0790 0.3523

PLCC 0.5341 0.4886 0.3247 0.5642 0.3979 0.0637 0.5779

TID SRCC 0.3383 0.3966 0.2437 0.4631 0.2778 0.0531 0.4900

KRCC 0.2399 0.2787 0.1672 0.3282 0.1925 0.0358 0.3455

PLCC 0.7425 0.7275 0.7158 0.8537 0.5212 0.0069 0.7490

CSIQ SRCC 0.6086 0.5311 0.6268 0.8144 0.3814 0.0363 0.6545

KRCC 0.4510 0.3995 0.4608 0.6222 0.2684 0.0247 0.4782

PLCC 0.8757 0.8748 0.9094 0.9045 0.8252 0.5327 0.9006

LIVE SRCC 0.8205 0.8180 0.8707 0.8912 0.7722 0.3339 0.8565

MD1 KRCC 0.6357 0.6242 0.6829 0.7019 0.5667 0.2347 0.6705

PLCC 0.3651 0.3430 0.8483 0.8969 0.6293 0.0042 0.8552

LIVE SRCC 0.1913 0.0647 0.7946 0.8824 0.6518 0.0347 0.8052

MD2 KRCC 0.1315 0.0413 0.6058 0.6958 0.4708 0.0234 0.6085

From Table 5, we can draw the following conclusions. Firstly, OU-IQA methods are
trained on the specific training datasets that are different from the commonly used IQA
databases. Thus the database independence should be the largest advantage of OU-IQA
methods. Even so, our proposed OA-IQA demonstrates competitive database independence
with IL-NIQE metric which is one of the most advanced OU-IQAmethods. Secondly, LIVE
database only have five types of distortions, and the reference images in LIVE database
are different from the test database in this experiment. Nevertheless, our proposed method
still keeps competitive performance. So, it is shown that the CS-BIQA metric has well
generalization capability.

4.4 Statistical significance and hypothesis testing

We evaluate the statistical significance of the performance of competing metrics. The
hypothesis based on paired t-test on the 100 SRCC values which are obtained from 100
train-test trials [7]. The results are shown in Table 6. A value of ‘0’ means that the row and

Table 6 Hypothesis Testing on TID2013

BLIIND-II BRISQUE NIQE IL-NIQE FRI-DoG 3D-IQA CS-BIQA

BLIIND-II 0 −1 1 −1 1 −1 −1

BRISQUE 1 0 1 1 1 1 −1

NIQE −1 −1 0 −1 −1 −1 −1

IL-NIQE 1 −1 1 0 1 −1 −1

FRI-DoG −1 −1 1 −1 0 −1 −1

3D-IQA 1 −1 1 1 1 0 −1

CS-BIQA 1 1 1 1 1 1 0
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Fig. 6 The impact of DoG levels

column are statistically indistinguishable. A value of “1” (“-1”) indicates that the row is sta-
tistically superior (worse) than the column. Table 6 demonstrates that our proposed method
is statistically superior to all competing metrics.

4.5 The influence of DoG model

To analyze the influences induced by DoG decomposition, two experiments are conducted.
Firstly, we evaluate the influence by the level of DoG model. The performance of CS-BIQA
on 2 ∼ 5 level DoG is shown in Fig. 6. N is the level of DoG, and the SRCC values
are calculated on TID2013. We can observe that the values of N show little impact on the
quality-predicted results. So we choose N = 2 in our proposed method.

Secondly, we evaluate the performance of features on each DoG band versus the com-
prehensive feature. The performances on two DoG bands are tabulated in Table 7. We can
observe that the features extracted on high-frequency band dominant the performance on
most databases. However, the performance becomes more robustness by combining the
features on all DoG bands.

Table 7 Performance on each DoG band versus the comprehensive scores of DoG bands

Database DOGh DOGl CS-BIQA

TID2013 0.6546 0.5287 0.6628

TID 0.6734 0.4784 0.6785

CSIQ 0.8299 0.6676 0.8338

LIVE 0.9223 0.8824 0.9247

LIVE MD1 0.8843 0.8467 0.8930

LIVE MD2 0.8546 0.8644 0.8728

BID 0.6175 0.5899 0.6420
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Table 8 Computation times of all metrics on LIVE database

Metric Time Cost (seconds)

BIQI 1.1337

BLIIND-II 62.9794

BRISQUE 0.2671

NIQE 0.4535

IL-NIQE 4.9286

FRIQUEE 35.3601

FRI-DoG 0.1370

3D-IQA 13.6315

CS-BIQA 0.2751

4.6 Computation time

The computation time is a crucial attribute which decides the practicability of IQA algo-
rithms. We compare the computation times of all competing metrics in Table 8. The
experiments are conducted under a single PC with an Intel(R) Core(TM) i5-4570 CPU of
3.20GHz and 8GB memory. All metrics are implemented with MATLAB 2014a. We record
the averaged computation times of all images in LIVE database. From Table 8, we can see
that the CS-BIQA has a competitive computation time. This guarantees the practicability of
our proposed method. Also, we can observe that the computation time of 3D-IQA metric
and entire FRIQUEE metric is quite long for practical applications.

5 Conclusion

In this paper, we proposed a novel NR-IQA metric leveraging the DoG model. We firstly
analyzed the frequency properties of image distortions which affect the prediction of image
perceptual quality. Then the statistical features were extracted on each DoG band to repre-
sent the properties of distortions. Subsequently, SVR was employed to train the regression
models between the integrated features and subjective opinion scores and predict the objec-
tive quality scores of test images. Experiments on several IQA databases demonstrated that
our proposed method has competing performance with state-of-the-art NR-IQA metrics. In
the proposed method, we adopted commonly used GGD and AGGD methods to fit MSCN
coefficients of DoG bands. In future work, we plan to use other statistical models to fit the
coefficients of DoG bands, which can fit the empirical distributions more appropriately.
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